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We revisit the classic problem of the structure of the isotropic-nematic interface within Ginzburg-Landau-de
Gennes theory, refining previous analytic treatments of biaxiality at the interface. We compare our analysis
with numerical results obtained through a highly accurate spectral collocation scheme for the solution of the
Landau-Ginzburg-de Gennes equations. In comparison to earlier work, we obtain improved agreement with
numerics for both the uniaxial and biaxial profiles, accurate asymptotic results for the decay of biaxial order on
both nematic and isotropic sides of the interface, and accurate fits to data from density-functional approaches
to this problem.
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Liquid crystalline states of matter provide a useful testing
ground for statistical mechanical theories of interface struc-
ture since a variety of ordered phases can be accessed in
experiments and computer simulations. The structure of the
isotropic-nematic �I-N� interface presents a simple example
of how interfacial order can differ radically from order in the
coexisting bulk phases, since biaxial order is generically ex-
pected at the interface even if the stable ordered phase is
purely uniaxial. The study of the isotropic-nematic interface
was initiated in an insightful paper by de Gennes, who intro-
duced a simple uniaxial ansatz for the tensor order parameter
Q��, which describes nematic order �1�. The de Gennes an-
satz is exact in the absence of elastic anisotropy. However,
the description of the interface in the presence of such aniso-
tropy poses a formidable analytic and numerical problem,
since the partial differential equations for the five indepen-
dent components of Q�� contain nonlinear couplings, while
Q�� is itself constrained by symmetry and the requirement
that its trace vanish.

Popa-Nita, Sluckin, and Wheeler �PSW� �2� studied the
I-N interface incorporating elastic anisotropy in the limit of
planar anchoring, adapting a parametrization introduced by
Sen and Sullivan �3�. In this parametrization, the principal
axes of Q�� remain fixed in space, and the problem reduces
to the solution of two coupled nonlinear partial differential
equations in the dimension perpendicular to the interface.
These equations represent the variation in the amplitude of
uniaxial and biaxial ordering across the interface. PSW
showed that the solutions of these equations exhibited biaxi-
ality in a region about the interface �2�. The uniaxial order
parameter �S� was adequately represented by a tanh profile,
as in the original calculation of de Gennes, while the biaxial
order parameter �T� exhibited more complex behavior, peak-
ing toward the isotropic side and with a trough on the nem-
atic side. The biaxial profile was also shown to have a long
tail toward the isotropic side, a feature hard to anticipate on
physical grounds.

This paper extends these calculations in several ways.
First, we show that terms dropped by PSW in their simplifi-
cation of the Ginzburg-Landau-de Gennes �GLdG� equations
are, in fact, comparable in magnitude to the terms they re-
tain, especially for small values of �=L2 /L1, the ratio of the
coefficients of the two lowest-order gradient terms in the
GLdG expansion. Thus, a more accurate treatment of the

interface requires that these terms be retained. The resulting
equations have closed form solutions in terms of hypergeo-
metric functions. We show that such solutions provide a bet-
ter description of the numerical data than the original calcu-
lation of PSW. We benchmark our analytic results through an
accurate numerical procedure, based on a Chebyshev poly-
nomial expansion, for the study of these equations.

We begin with the GLdG expansion of the free energy for
a general Q��,
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Here A, B, and C are expansion parameters, while L1 ,L2 are
elastic constants. We choose B=−0.5, C=2.67, and
A=B2 /27C, thus enforcing phase coexistence between an
isotropic and uniaxial nematic phase �4�. The interface is
taken to be flat and infinitely extended in the x-y plane. The
spatial variation in the order parameter only occurs along the
z direction �3�. We scale Q��→Q�� /Sc, where Sc=− 2B

9C ,
F→ 16

9CSc
4F, and measure lengths in units of

lc=�54C�L1+2L2 /3� /B2; we choose L1=10−6 in our numer-
ics and obtain L2 from our choice of �. In the case of planar
anchoring, the ordering at infinity is purely uniaxial and
taken to be along the x axis. In this case, as shown by Sen
and Sullivan, uniaxial and biaxial orders vary only with z and
the principal axes of the Q tensor remain fixed in space. The
form of Q is then
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Inserting this form of Q into the free energy and performing
the minimization yields �2�
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Popa-Nita, Sluckin, and Wheeler now make several approxi-
mations to Eqs. �3� and �4� to solve them. First, in Eq. �3�, all
terms in T are dropped since S is typically much larger than
T. The resulting equation for S is solved by the tanh function.
In Eq. �4�, PSW drop the �2+��

�3+2���z
2T term while retaining

�
�3+2���z

2S. A test of self-consistency of this approximation is
the comparison of the magnitude of these terms within the
theory. Figure 1 shows the terms �2+��

�3+2���z
2T �dark line� and

�
�3+2���z

2S �light line� computed through the PSW solution. As
can be seen from the figure these terms only differ by a
factor of order unity. Deep into the isotropic side, the term
ignored by PSW exceeds the value of the term retained.
Thus, while the PSW approach leads to a straightforward
algebraic relation between T and S, a more accurate method
would be to retain the partial derivative term as well, requir-
ing that we solve a partial differential equation as opposed to
an algebraic one.

Our approach to this problem uses the same approxima-
tions as PSW for Eq. �3�. We thus take

S =
Sc

2 �1 + tanh� z
�2�

�� , �5�

where �=� 1+�/6
1+2�/3 . Inserting this in Eq. �4�, scaling z by �2�,

redefining the resulting quantity as z again, and dropping the
nonlinear term, we obtain
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3�2+�� .

The solution of the equation consists of a homogeneous
part Th and a particular part Tp, where Th=C1y1�z�+C2y2�z�
and
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Here a1= 1
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2 and c2=1+2��. The
function 2F1 is a hypergeometric function and C1 and C2 are
fixed by boundary conditions.

The particular solution takes the form

Tp�z� = �− y1�z�I2�z� + y2�z�I1�z��/W�z� , �8�

where the Wronskian W�z�=W=y1�dy2 /dz�−y2�dy1 /dz�,
where
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The Pochhammer symbol �a�n which enters above is defined
via �a�n=a�a+1��a+2� . . . �a+n−1�. Here t= �1−tanh�z�� /2
and t1= �1+tanh�z�� /2 and the result for I1�z� and I2�z� is
obtained by expanding the hypergeometric functions in Eqs.
�7� in a power series and integrating term by term �5�. Note
that the solutions of the homogeneous part diverge asymp-
totically. Thus, for the boundary condition T=0 at z= �� the
only physical solution is the particular one. Equation �8� is
thus the key analytical result of this paper, describing the
variation in biaxiality across the interface. In our numerical
evaluations, we sum the series for I1�z� and I2�z�, retaining as
many terms as are required to ensure convergence. The series
in I2 converges very fast �only three terms need be retained
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FIG. 1. �Color online� A comparison of the terms �2+��
�3+2���z

2T
�dark line� and �

�3+2���z
2S �light line� obtained within the PSW solu-

tion to the GLdG equations, for a � value of 18.0. The PSW ap-
proximation consists of ignoring the �2+��

�3+2���z
2T term in comparison

to the �
�3+2���z

2S term. Both terms, however, are of comparable
magnitude.
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for good results� whereas the series in I1 converges more
slowly and around nine terms must be retained for conver-
gence. To convert these into physical units, we must undo the
sequence of length transformations, replacing z→z / ��2�lc�.

An asymptotic analysis of these equations is possible: for
z→−�, S and T are small. The tanh profile for S can be
approximated as 1

2 �1+tanh� z
�2�

��→e2z/�2� while Eq. �4� takes
the form 2�2�z

2T=4�T− � 2�
2+� �e2z/�2� with �= 6+�

3�2+�� . Thus
�z

2T= 4
3

�3+2��
�2+�� T− 2��3+2��

�2+���6+��e
2z/�2� with asymptotic solution

T � e�4�3+2��/3�2+��z, z → − � , �11�

a result in perfect accord with the computed forms of T deep
into the isotropic phase. Note that T	S and �S+T� /2	S as

one moves deeper into the isotropic side. This implies that
the principal order parameter is negative as pointed out in
Ref. �2�, where this result was obtained numerically.

As z→�, an alternative asymptotic expansion can be de-
rived by taking S=1− 1

2e−bz with b=2�3+2�
6+� . We then obtain

T � e−2�3+2�/6+�z, z → � , �12�

in agreement with our numerical results. Note that we pro-
vide results for finite �, whereas Popa-Nita, Sluckin, and
Wheeler provide an analysis of the asymptotics only in the
specific limit that �→�. However, our results cannot be di-
rectly translated to this limit, since we assume a tanh profile

(a) (b)

(c) (d)

FIG. 2. �Color online� Biaxial and uniaxial profiles for �=0�a�, 0.4�b�, 4�c�, and 18.0�d�, comparing results from our numerical
computations �� �, with our analytic formula �dashed line� and the formula of PSW �solid line�. The main figure shows the biaxial profile
whereas the inset shows the uniaxial profile. In �a�, for �=0, the solution has T=0, with the S profile exactly given by the tanh form. In �b�,
for �=0.4, the computed biaxial profile �t� �main panel� is fit remarkably well by our analytic form, whereas the PSW approximation tends
to overestimate the peak value. The uniaxial �s� profile is shown in the inset of �a�; here the results obtained by us and by PSW are identical
and the fit to a tanh profile is accurate over the entire region. In �c� �main panel�, for �=4.0, the numerical data are fit well by the analytic
forms, particularly away from the main peak, yielding essentially exact agreement deep into the isotropic and nematic sides. The PSW
approximation is still an overestimate to the peak value, and also differs sharply in relation to the numerical data deep into the isotropic side.
The inset shows the uniaxial �s� profile for this case. In �d� �main panel�, for �=18.0, the PSW form appears to fit the peak better for larger
�, but again fails to capture the decay toward the isotropic side.
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of S; this approximation becomes increasingly inaccurate for
larger � �see below�.

Our numerical results are obtained using a spectral collo-
cation method �6�, applied to the GLdG equations. In the
spectral collocation, the solution is expanded in an orthogo-
nal basis of Chebyshev polynomials in a bounded interval.
Differentiation operators constructed from this Chebyshev
interpolant are spectrally accurate, in the sense that the error
vanishes exponentially in the number of retained polynomi-
als. The interpolant is constructed so as to satisfy Dirichlet
boundary conditions. Though the physical problem is for an
unbounded interval, our numerical approximation of a
bounded interval gives excellent results since all variation in
the order parameters is restricted to the region proximate to
the interface.

Specifically, we solve the equations of equilibrium

�A + C Tr Q2�Q���x,t� + BQ��
2 �x,t�

= L1�
2Q���x,t� + L2�����Q���x,t�� �13�

by transforming to a basis �ai� which enforces symmetry
and tracelessness, as Q��=i=1

5 aiT��
i , where T1=�3

2 ẑẑ
�

,

T2=�1
2 �x̂x̂− ŷŷ� , T3=�2x̂ŷ

�
, T4=�2x̂ẑ

�
, T5=�2ŷẑ

�
. Over-

bars indicate traceless symmetric parts. We thus obtain five
simultaneous partial differential equations for the ai, which
are steady states of the time-dependent equations we have
obtained earlier �7�. Note specifically that we make no
symmetry-based ansatz for the components of Q�� �8�.

The spectral collocation reduces these differential equa-
tions to nonlinear algebraic equations. We solve them using a
relaxation method from a well-chosen initial condition, re-
laxing until the differential change in successive iterations is
less than 10−5. Spectral convergence to machine accuracy is
obtained by retaining 128 Chebyshev modes, as we have
checked by an explicit calculation. To compare with analyti-
cal and density-functional results, the solution at the Cheby-
shev nodes is interpolated using barycentric interpolation
without compromising spectral accuracy. The DMSUITE li-
brary is used for the numerical implementation �9�.

Our results are summarized in Figs. 2 and 3. The main
panel of Fig. 2�a�, obtained by solving Eqs. �3� and �4� for a
value of �=0.0, shows the biaxiality profile obtained using
our numerical spectral scheme �crosses�, as compared to the
analytic result of T=0. The uniaxiality profile shown in the
inset is exactly the tanh profile obtained by de Gennes. This
limit provides a simple test of our numerical methods, since
the solution to Eqs. �3� and �4� in this limit is exact. Figure
2�b� shows the biaxiality profile obtained using our spectral
scheme �crosses�, as compared to the analytic results derived
here �dashed line� and results obtained by PSW �solid line�
for a value of �=0.4. As can be seen, the numerical data are
fit remarkably well by the analytic forms, whereas the PSW
approximation tends to overestimate the peak value. The in-
set to Fig. 2�b� shows the uniaxial �S� profile, obtained nu-
merically as well as in our analytic calculation; here the re-
sults obtained by us and by PSW are identical. The fit to a
tanh profile is accurate over the entire region.

The main panel of Fig. 2�c� shows the biaxiality profile

obtained using our spectral scheme �crosses�, as compared to
the analytic results derived here �dashed line� and results
obtained by PSW �solid line� for a value of �=4. Again the
numerical data are fit well by the analytic forms, particularly
away from the main peak, yielding essentially exact agree-
ment deep into the isotropic and nematic sides. The PSW
approximation is still an overestimate to the peak value, and
also differs sharply in relation to the numerical data deep into
the isotropic side. The inset to Fig. 2�c� shows the uniaxial
�S� profile for this case. Figure 2�d� shows the biaxiality
profile obtained using our spectral scheme �crosses�, as com-
pared to the analytic results derived here �dashed line� and
results obtained by PSW �solid line� for a value of �=18. For
these—and larger—values of �, our analytic fits differ no-
ticeably from the numerical data. The PSW form appears to
fit better for larger �, although we believe that this is fortu-
itous. It appears that the principal error arises from our ap-
proximation of the S profile as a tanh form. For large �, this
approximation is less accurate.

Figure 3 compares the results of our analytic calculation
to profiles of T obtained from a density-functional calcula-
tion for the isotropic-nematic interface due to Chen �10� a
method which provides an alternative, more molecular ap-
proach to this problem �11�. We have taken numerical data
for uniaxial and biaxial profiles obtained in Ref. �10�, vary-
ing the free parameters Sc, lc, and � in our solutions until an
optimal fit is obtained. The values of Sc and lc can be ob-
tained from fits to S; thus only � needs be varied to represent
the T profile. Figure 3 shows profiles obtained for two values
of � :�=5.8 �for z
0� and �=0.69 �for z	0�. The larger �
value fits the profile very closely on the isotropic side,
whereas the smaller � value provides an accurate fit on the
nematic side �12�. It does not seem possible to fit the com-
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FIG. 3. �Color online� A comparison of the results of our ana-
lytic calculation to profiles of T obtained from a density-functional
calculation for the isotropic-nematic interface. Profiles obtained for
two values of �, �=5.8 �for z
0� and �=0.69 �for z	0� are
shown. The larger � value essentially fits the T profile exactly on
the isotropic side, whereas the smaller � value provides an accurate
fit on the nematic side. The inset shows the S profile obtained from
the density functional calculation, together with an optimum fit
varying the value of lc.
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plete profile using a single value of �. This could have been
anticipated on physical grounds since the density-functional
theory yields a density difference between coexisting isotro-
pic and nematic phases. The elastic coefficients L1 and L2
which enter our calculation do in principle contain a density
dependence, which we ignore here. Thus, GLdG theories of
the form we use should provide a better description of ther-
motropic liquid crystals, in which the transition is tempera-
ture driven, as opposed to the transitions seen in lyotropic
liquid crystals, which are driven by increasing the density.

In conclusion, we have presented results for the uniaxial
and biaxial profiles, in the case of planar anchoring, for the
classic problem of the structure of the isotropic-nematic in-
terface within Ginzburg-Landau-de Gennes theory. Our work
refines previous analytic treatments of biaxiality at the inter-
face. We have implemented a highly accurate spectral collo-
cation scheme for the solution of the Landau-Ginzburg-de

Gennes equations and used this numerical scheme in our
tests of the analytic results.

In comparison to earlier work, we obtain improved agree-
ment with numerics for both the uniaxial and biaxial profiles,
with our results being increasingly accurate as the anisotropy
is reduced. We also provide accurate asymptotic results for
the decay of the S and T order parameters deep into the
nematic and isotropic phases. Our calculated profiles show a
pleasing consistency with profiles obtained from density-
functional approaches. Further extensions of these numerical
and analytic methods to the case of an intermediate anchor-
ing condition far from the interface are currently under way.
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